Source code for atm.config

# -*- coding: utf-8 -*-

"""Configuration Module."""

from __future__ import absolute_import, unicode_literals

import argparse
import os
import re
from builtins import object, str

import yaml

from atm.constants import (
    BUDGET_TYPES, CUSTOM_CLASS_REGEX, JSON_REGEX, METHODS, METRICS, SCORE_TARGETS, SELECTORS,
    SQL_DIALECTS, TIME_FMT, TUNERS)


[docs]class Config(object): """ Class which stores configuration for one aspect of ATM. Subclasses of Config should define the list of all configurable parameters and any default values for those parameters other than None (in PARAMETERS and DEFAULTS, respectively). The object can be initialized with any number of keyword arguments; only kwargs that are in PARAMETERS will be used. This means you can (relatively) safely do things like ``args = parser.parse_args()`` ``conf = Config(**vars(args))`` and only relevant parameters will be set. Subclasses do not need to define __init__ or any other methods. """ _PREFIX = None _CONFIG = None @classmethod def _add_prefix(cls, name): if cls._PREFIX: return '{}_{}'.format(cls._PREFIX, name) else: return name @classmethod def _get_arg(cls, args, name, use_prefix): class_value = getattr(cls, name) if use_prefix: name = cls._add_prefix(name) required = False if isinstance(class_value, dict): required = 'default' not in class_value default = class_value.get('default') elif isinstance(class_value, tuple): required = False default = class_value[1] else: required = False default = None if required and name not in args: raise KeyError(name) return args.get(name, default) def __init__(self, args, path=None): if isinstance(args, argparse.Namespace): args = vars(args) config_arg = self._CONFIG or self._PREFIX if not path and config_arg: path = args.get(config_arg + '_config') if path: with open(path, 'r') as f: args = yaml.load(f) use_prefix = False else: use_prefix = True for name, value in vars(self.__class__).items(): if not name.startswith('_') and not callable(value): setattr(self, name, self._get_arg(args, name, use_prefix))
[docs] @classmethod def get_parser(cls): """Get an ArgumentParser for this config.""" parser = argparse.ArgumentParser(add_help=False) # make sure the text for these arguments is formatted correctly # this allows newlines in the help strings parser.formatter_class = argparse.RawTextHelpFormatter if cls._PREFIX: parser.add_argument('--{}-config'.format(cls._PREFIX), help='path to yaml {} config file'.format(cls._PREFIX)) for name, description in vars(cls).items(): if not name.startswith('_') and not callable(description): arg_name = '--' + cls._add_prefix(name).replace('_', '-') if isinstance(description, dict): parser.add_argument(arg_name, **description) elif isinstance(description, tuple): description, default = description parser.add_argument(arg_name, help=description, default=default) else: parser.add_argument(arg_name, help=description) return parser
[docs] def to_dict(self): """Get a dict representation of this configuraiton.""" return { name: value for name, value in vars(self).items() if not name.startswith('_') and not callable(value) }
def __repr__(self): return '{}({})'.format(self.__class__.__name__, self.to_dict())
[docs]class AWSConfig(Config): """ Stores configuration for AWS S3 connections """ _PREFIX = 'aws' access_key = 'AWS access key' secret_key = 'AWS secret key' s3_bucket = 'AWS S3 bucket to store data' s3_folder = 'Folder in AWS S3 bucket in which to store data'
[docs]class DatasetConfig(Config): """ Stores configuration of a Dataset """ _CONFIG = 'run' name = 'Given name for this dataset.' train_path = { 'help': 'Path to raw training data', 'required': True } test_path = 'Path to raw test data (if applicable)' description = 'Description of dataset' class_column = ('Name of the class column in the input data', 'class')
[docs]class SQLConfig(Config): """ Stores configuration for SQL database setup & connection """ _PREFIX = 'sql' dialect = { 'help': 'Dialect of SQL to use', 'default': 'sqlite', 'choices': SQL_DIALECTS } database = ('Name of, or path to, SQL database', 'atm.db') username = 'Username for SQL database' password = 'Password for SQL database' host = 'Hostname for database machine' port = 'Port used to connect to database' query = 'Specify extra login details'
[docs]class LogConfig(Config): models_dir = ('Directory where computed models will be saved', 'models') metrics_dir = ('Directory where model metrics will be saved', 'metrics') verbose_metrics = { 'help': ( 'If set, compute full ROC and PR curves and ' 'per-label metrics for each classifier' ), 'action': 'store_true', 'default': False }
def _option_or_path(options, regex=CUSTOM_CLASS_REGEX): def type_check(s): # first, check whether the argument is one of the preconfigured options if s in list(options): return s # otherwise, check it against the regex, and try to pull out a path to a # real file. The regex must extract the path to the file as groups()[0]. match = re.match(regex, s) if match and os.path.isfile(match.groups()[0]): return s # if both of those fail, there's something wrong raise argparse.ArgumentTypeError('{} is not a valid option or path!'.format(s)) return type_check
[docs]class RunConfig(Config): """Stores configuration for Dataset and Datarun setup.""" _CONFIG = 'run' dataset_id = { 'help': 'ID of dataset, if it is already in the database', 'type': int } run_per_partition = { 'help': 'if true, generate a new datarun for each hyperpartition', 'default': False, 'action': 'store_true', } # Method options: # logreg - logistic regression # svm - support vector machine # sgd - linear classifier with stochastic gradient descent # dt - decision tree # et - extra trees # rf - random forest # gnb - gaussian naive bayes # mnb - multinomial naive bayes # bnb - bernoulli naive bayes # gp - gaussian process # pa - passive aggressive # knn - K nearest neighbors # mlp - multi-layer perceptron # # Notes: # - Support vector machines (svm) can take a long time to train. It's not an # error, it's just part of what happens when the method happens to explore # a crappy set of parameters on a powerful algo like this. # - Stochastic gradient descent (sgd) can sometimes fail on certain # parameter settings as well. Don't worry, they train SUPER fast, and the # worker.py will simply log the error and continue. methods = { 'help': ( 'Method or list of methods to use for ' 'classification. Each method can either be one of the ' 'pre-defined method codes listed below or a path to a ' 'JSON file defining a custom method.\n\nOptions: [{}]' ).format(', '.join(str(s) for s in METHODS.keys())), 'default': ['logreg', 'dt', 'knn'], 'type': _option_or_path(METHODS.keys(), JSON_REGEX), 'nargs': '+' } priority = { 'help': 'Priority of the datarun (higher = more important', 'default': 1, 'type': int } budget_type = { 'help': 'Type of budget to use', 'default': 'classifier', 'choices': BUDGET_TYPES, } budget = { 'help': 'Value of the budget, either in classifiers or minutes', 'default': 100, 'type': int, } deadline = ( 'Deadline for datarun completion. If provided, this ' 'overrides the configured walltime budget.\nFormat: {}' ).format(TIME_FMT.replace('%', '%%')) # Which field to use to judge performance, for the sake of AutoML # options: # f1 - F1 score (harmonic mean of precision and recall) # roc_auc - area under the Receiver Operating Characteristic curve # accuracy - percent correct # cohen_kappa - measures accuracy, but controls for chance of guessing # correctly # rank_accuracy - multiclass only: percent of examples for which the true # label is in the top 1/3 most likely predicted labels # ap - average precision: nearly identical to area under # precision/recall curve. # mcc - matthews correlation coefficient: good for unbalanced classes # # f1 and roc_auc may be appended with _micro or _macro to use with # multiclass problems. metric = { 'help': ( 'Metric by which ATM should evaluate classifiers. ' 'The metric function specified here will be used to ' 'compute the "judgment metric" for each classifier.' ), 'default': 'f1', 'choices': METRICS, } # Which data to use for computing judgment score # cv - cross-validated performance on training data # test - performance on test data # mu_sigma - lower confidence bound on cv score score_target = { 'help': ( 'Determines which judgment metric will be used to ' 'search the hyperparameter space. "cv" will use the mean ' 'cross-validated performance, "test" will use the ' 'performance on a test dataset, and "mu_sigma" will use ' 'the lower confidence bound on the CV performance.' ), 'default': 'cv', 'choices': SCORE_TARGETS } # AutoML Arguments ###################################################### # ########################################################################## # hyperparameter selection strategy # How should ATM sample hyperparameters from a given hyperpartition? # uniform - pick randomly! (baseline) # gp - vanilla Gaussian Process # gp_ei - Gaussian Process expected improvement criterion # gp_eivel - Gaussian Process expected improvement, with randomness added # in based on velocity of improvement # path to custom tuner, defined in python tuner = { 'help': ( 'Type of BTB tuner to use. Can either be one of the pre-configured ' 'tuners listed below or a path to a custom tuner in the form ' '"/path/to/tuner.py:ClassName".\n\nOptions: [{}]' ).format(', '.join(str(s) for s in TUNERS.keys())), 'default': 'uniform', 'type': _option_or_path(TUNERS.keys()) } # How should ATM select a particular hyperpartition from the set of all # possible hyperpartitions? # Options: # uniform - pick randomly # ucb1 - UCB1 multi-armed bandit # bestk - MAB using only the best K runs in each hyperpartition # bestkvel - MAB with velocity of best K runs # purebestkvel - always return hyperpartition with highest velocity # recentk - MAB with most recent K runs # recentkvel - MAB with velocity of most recent K runs # hieralg - hierarchical MAB: choose a classifier first, then choose # a partition # path to custom selector, defined in python selector = { 'help': ( 'Type of BTB selector to use. Can either be one of the pre-configured ' 'selectors listed below or a path to a custom tuner in the form ' '"/path/to/selector.py:ClassName".\n\nOptions: [{}]' ).format(', '.join(str(s) for s in SELECTORS.keys())), 'default': 'uniform', 'type': _option_or_path(SELECTORS.keys()) } # r_minimum is the number of random runs performed in each hyperpartition before # allowing bayesian opt to select parameters. Consult the thesis to # understand what those mean, but essentially: # # if (num_classifiers_trained_in_hyperpartition >= r_minimum) # # train using sample criteria # else # # train using uniform (baseline) r_minimum = { 'help': 'number of random runs to perform before tuning can occur', 'default': 2, 'type': int } # k is number that xxx-k methods use. It is similar to r_minimum, except it is # called k_window and determines how much "history" ATM considers for certain # partition selection logics. k_window = { 'help': 'number of previous scores considered by -k selector methods', 'default': 3, 'type': int } # gridding determines whether or not sample selection will happen on a grid. # If any positive integer, a grid with `gridding` points on each axis is # established, and hyperparameter vectors are sampled from this finite # space. If 0 (or blank), hyperparameters are sampled from continuous # space, and there is no limit to the number of hyperparameter vectors that # may be tried. gridding = { 'help': 'gridding factor (0: no gridding)', 'default': 0, 'type': int }