atm package¶
Submodules¶
Module contents¶
Auto Tune Models A multi-user, multi-data AutoML framework.
Classes
|
|
|
This class contains everything needed to run an end-to-end ATM classifier pipeline. |
-
class
atm.
ATM
(dialect='sqlite', database='atm.db', username=None, password=None, host=None, port=None, query=None, access_key=None, secret_key=None, s3_bucket=None, s3_folder=None, models_dir='models', metrics_dir='metrics', verbose_metrics=False)[source]¶ Bases:
object
Methods
add_datarun
(dataset_id[, budget, …])Register one or more Dataruns to the Database.
add_dataset
(train_path[, test_path, name, …])Add a new dataset to the Database.
load_model
(classifier_id)Load a Model from the Database.
run
(train_path[, test_path, name, …])Create a Dataset and a Datarun and then work on it.
work
([datarun_ids, save_files, …])Get unfinished Dataruns from the database and work on them.
-
add_datarun
(dataset_id, budget=100, budget_type='classifier', gridding=0, k_window=3, metric='f1', methods=['logreg', 'dt', 'knn'], r_minimum=2, run_per_partition=False, score_target='cv', priority=1, selector='uniform', tuner='uniform', deadline=None)[source]¶ Register one or more Dataruns to the Database.
The methods hyperparameters will be analyzed and Hyperpartitions generated from them. If
run_per_partition
isTrue
, one Datarun will be created for each Hyperpartition. Otherwise, a single one will be created for all of them.- Parameters
dataset_id (int) – Id of the Dataset which this Datarun will belong to.
budget (int) – Budget amount. Optional. Defaults to
100
.budget_type (str) – Budget Type. Can be ‘classifier’ or ‘walltime’. Optional. Defaults to
'classifier'
.gridding (int) –
gridding
setting for the Tuner. Optional. Defaults to0
.k_window (int) –
k
setting for the Selector. Optional. Defaults to3
.metric (str) – Metric to use for the tuning and selection. Optional. Defaults to
'f1'
.methods (list) – List of methods to try. Optional. Defaults to
['logreg', 'dt', 'knn']
.r_minimum (int) –
r_minimum
setting for the Tuner. Optional. Defaults to2
.run_per_partition (bool) – whether to create a separated Datarun for each Hyperpartition or not. Optional. Defaults to
False
.score_target (str) – Which score to use for the tuning and selection process. It can be
'cv'
or'test'
. Optional. Defaults to'cv'
.priority (int) – Priority of this Datarun. The higher the better. Optional. Defaults to
1
.selector (str) – Type of selector to use. Optional. Defaults to
'uniform'
.tuner (str) – Type of tuner to use. Optional. Defaults to
'uniform'
.deadline (str) – Time deadline. It must be a string representing a datetime in the format
'%Y-%m-%d %H:%M'
. If given,budget_type
will be set to'walltime'
.
- Returns
The created Datarun or list of Dataruns.
- Return type
Datarun
-
add_dataset
(train_path, test_path=None, name=None, description=None, class_column=None)[source]¶ Add a new dataset to the Database.
- Parameters
train_path (str) – Path to the training CSV file. It can be a local filesystem path, absolute or relative, or an HTTP or HTTPS URL, or an S3 path in the format
s3://{bucket_name}/{key}
. Required.test_path (str) – Path to the testing CSV file. It can be a local filesystem path, absolute or relative, or an HTTP or HTTPS URL, or an S3 path in the format
s3://{bucket_name}/{key}
. Optional. If not given, the training CSV will be split in two parts, train and test.name (str) – Name given to this dataset. Optional. If not given, a hash will be generated from the training_path and used as the Dataset name.
description (str) – Human friendly description of the Dataset. Optional.
class_column (str) – Name of the column that will be used as the target variable. Optional. Defaults to
'class'
.
- Returns
The created dataset.
- Return type
Dataset
-
load_model
(classifier_id)[source]¶ Load a Model from the Database.
- Parameters
classifier_id (int) – Id of the Model to load.
- Returns
The loaded model instance.
- Return type
-
run
(train_path, test_path=None, name=None, description=None, class_column='class', budget=100, budget_type='classifier', gridding=0, k_window=3, metric='f1', methods=['logreg', 'dt', 'knn'], r_minimum=2, run_per_partition=False, score_target='cv', selector='uniform', tuner='uniform', deadline=None, priority=1, save_files=True, choose_randomly=True, cloud_mode=False, total_time=None, verbose=True)[source]¶ Create a Dataset and a Datarun and then work on it.
- Parameters
train_path (str) – Path to the training CSV file. It can be a local filesystem path, absolute or relative, or an HTTP or HTTPS URL, or an S3 path in the format
s3://{bucket_name}/{key}
. Required.test_path (str) – Path to the testing CSV file. It can be a local filesystem path, absolute or relative, or an HTTP or HTTPS URL, or an S3 path in the format
s3://{bucket_name}/{key}
. Optional. If not given, the training CSV will be split in two parts, train and test.name (str) – Name given to this dataset. Optional. If not given, a hash will be generated from the training_path and used as the Dataset name.
description (str) – Human friendly description of the Dataset. Optional.
class_column (str) – Name of the column that will be used as the target variable. Optional. Defaults to
'class'
.budget (int) – Budget amount. Optional. Defaults to
100
.budget_type (str) – Budget Type. Can be ‘classifier’ or ‘walltime’. Optional. Defaults to
'classifier'
.gridding (int) –
gridding
setting for the Tuner. Optional. Defaults to0
.k_window (int) –
k
setting for the Selector. Optional. Defaults to3
.metric (str) – Metric to use for the tuning and selection. Optional. Defaults to
'f1'
.methods (list) – List of methods to try. Optional. Defaults to
['logreg', 'dt', 'knn']
.r_minimum (int) –
r_minimum
setting for the Tuner. Optional. Defaults to2
.run_per_partition (bool) – whether to create a separated Datarun for each Hyperpartition or not. Optional. Defaults to
False
.score_target (str) – Which score to use for the tuning and selection process. It can be
'cv'
or'test'
. Optional. Defaults to'cv'
.priority (int) – Priority of this Datarun. The higher the better. Optional. Defaults to
1
.selector (str) – Type of selector to use. Optional. Defaults to
'uniform'
.tuner (str) – Type of tuner to use. Optional. Defaults to
'uniform'
.deadline (str) – Time deadline. It must be a string representing a datetime in the format
'%Y-%m-%d %H:%M'
. If given,budget_type
will be set to'walltime'
.verbose (bool) – Whether to be verbose about the process. Optional. Defaults to
True
.
- Returns
The created Datarun or list of Dataruns.
- Return type
Datarun
-
work
(datarun_ids=None, save_files=True, choose_randomly=True, cloud_mode=False, total_time=None, wait=True, verbose=False)[source]¶ Get unfinished Dataruns from the database and work on them.
Check the ModelHub Database for unfinished Dataruns, and work on them as they are added. This process will continue to run until it exceeds total_time or there are no more Dataruns to process or it is killed.
- Parameters
datarun_ids (list) – list of IDs of Dataruns to work on. If
None
, this will work on any unfinished Dataruns found in the database. Optional. Defaults toNone
.save_files (bool) – Whether to save the fitted classifiers and their metrics or not. Optional. Defaults to True.
choose_randomly (bool) – If
True
, work on all the highest-priority dataruns in random order. Otherwise, work on them in sequential order (by ID). Optional. Defaults toTrue
.cloud_mode (bool) – Save the models and metrics in AWS S3 instead of locally. This option works only if S3 configuration has been provided on initialization. Optional. Defaults to
False
.total_time (int) – Total time to run the work process, in seconds. If
None
, continue to run until interrupted or there are no more Dataruns to process. Optional. Defaults toNone
.wait (bool) – If
True
, wait for more Dataruns to be inserted into the Database once all have been processed. Otherwise, exit the worker loop when they run out. Optional. Defaults toFalse
.verbose (bool) – Whether to be verbose about the process. Optional. Defaults to
True
.
-
-
class
atm.
Model
(method, params, judgment_metric, class_column, testing_ratio=0.3, verbose_metrics=False)[source]¶ Bases:
object
This class contains everything needed to run an end-to-end ATM classifier pipeline. It is initialized with a set of parameters and trained like a normal sklearn model. This class can be pickled and saved to disk, then unpickled outside of ATM and used to classify new datasets.
Attributes
list() -> new empty list
str(object=’‘) -> str
int(x=0) -> integer
str(object=’‘) -> str
str(object=’‘) -> str
str(object=’‘) -> str
str(object=’‘) -> str
Methods
load
(path)Loads a saved Model instance from a path.
predict
(data)Generate predictions from new data.
save
(path[, force])Save this Model using pickle.
train_test
(dataset)Train and test this model using Cross Validation and Holdout.
-
ATM_KEYS
= ['_scale', '_whiten', '_scale_minmax', '_pca', '_pca_dimensions']¶
-
MINMAX
= '_scale_minmax'¶
-
N_FOLDS
= 5¶
-
PCA
= '_pca'¶
-
PCA_DIMS
= '_pca_dimensions'¶
-
SCALE
= '_scale'¶
-
WHITEN
= '_whiten'¶
-
classmethod
load
(path)[source]¶ Loads a saved Model instance from a path.
- Parameters
path (str) – path where the model is saved.
- Returns
New model instance.
- Return type
-
predict
(data)[source]¶ Generate predictions from new data.
- Parameters
data (pandas.DataFrame) – Data for which to predict classes
- Returns
Vector of predictions
- Return type
pandas.Series
-